Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration.

نویسندگان

  • Tetsuji Sekiya
  • Matthew C Holley
  • Kento Hashido
  • Kazuya Ono
  • Koichiro Shimomura
  • Rie T Horie
  • Kiyomi Hamaguchi
  • Atsuhiro Yoshida
  • Tatsunori Sakamoto
  • Juichi Ito
چکیده

Cell transplantation therapy has long been investigated as a therapeutic intervention for neurodegenerative disorders, including spinal cord injury, Parkinson's disease, and amyotrophic lateral sclerosis. Indeed, patients have high hopes for a cell-based therapy. However, there are numerous practical challenges for clinical translation. One major problem is that only very low numbers of donor cells survive and achieve functional integration into the host. Glial scar tissue in chronic neurodegenerative disorders strongly inhibits regeneration, and this inhibition must be overcome to accomplish successful cell transplantation. Intraneural cell transplantation is considered to be the best way to deliver cells to the host. We questioned this view with experiments in vivo on a rat glial scar model of the auditory system. Our results show that intraneural transplantation to the auditory nerve, preceded by chondroitinase ABC (ChABC)-treatment, is ineffective. There is no functional recovery, and almost all transplanted cells die within a few weeks. However, when donor cells are placed on the surface of a ChABC-treated gliotic auditory nerve, they autonomously migrate into it and recapitulate glia- and neuron-guided cell migration modes to repair the auditory pathway and recover auditory function. Surface transplantation may thus pave the way for improved functional integration of donor cells into host tissue, providing a less invasive approach to rescue clinically important neural tracts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunohistochemical Assessment of Inflammation and Regeneration in Morphine-Dependent Rat Brain

Background: Opioids are amongst the most common abused drugs. Pathologic studies on opioid abuse are limited since the evaluation of inflammation and regeneration in brain tissue is not as simple as other tissues of the body. Thus, the present study aimed to determine the relationship between the dependence on morphine and inflammatory and regenerative processes. Methods: In this experimental s...

متن کامل

O27: The Role of Hydrogels and Cell Based Therapies in Regeneration of Spinal Cord Injury

Spinal cord injury (SCI) is one of the devastating conditions leading to functional and neurological deficits following road traffic accidents. To date, there is no definite treatment for repairing damaged spinal cord tissue. In this regard, cell therapy opens a new window in front of scientists by using different cells such as mesenchymal stem cells, olfactory ensheathing cells, Schwann cells,...

متن کامل

P 140: Stem Cells in Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...

متن کامل

Comparison and Evaluation of Current Animal Models for Perineural Scar Formation in Rat

  Objective (s): Scar formation in injured peripheral nerve bed causes several consequences which impede the process of nerve regeneration. Several animal models are used for scar induction in preclinical studies which target prevention and/or suppression of perineural scar. This study evaluates the translational capacity of four of physical injury models to induce scar formation aro...

متن کامل

Stem cell transplantation and regeneration after dorsal root avulsion

Trolle, C. 2016. Stem cell transplantation and regeneration after dorsal root avulsion. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1162. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9410-0. Spinal root avulsion leads to paralysis and loss of sensory function. Surgical methods can improve motor function and ameliorate pain but sensory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 26  شماره 

صفحات  -

تاریخ انتشار 2015